Structure Reports Online

ISSN 1600-5368

Iraida A. Charushnikova^a* and Christophe Den Auwer^b

^aInstitute of Physical Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russia, and ^bCEA/VALRHO Marcoule, DEN/DRCP/SCPS/LCAM, Bâtiment 166, BP 171, 30207 Bagnols-sur-Cèze Cedex, France

Correspondence e-mail: chara@ipc.rssi.ru

Key indicators

Single-crystal X-ray study T = 130 KMean σ (C–C) = 0.005 Å R factor = 0.029 wR factor = 0.067 Data-to-parameter ratio = 12.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Acta Crystallographica Section E

2,2'-Bipyridyl-2-ium aqua(2,2'-bipyridyl- $\kappa^2 N, N'$)tetakis(nitrato- $\kappa^2 O, O'$)praseodymium(III) 2,2'-bipyridyl hemisolvate

The Pr atom in the title complex, $(C_{10}H_9N_2)[Pr(NO_3)_4 (C_{10}H_8N_2)(H_2O)]$ ·0.5 $C_{10}H_8N_2$, is 11-coordinated. Hydrogen bonds between the coordinated water molecule, the uncoordinated 2,2'-bipyridylium [(HBipy)⁺] and the centrosymmetric 2,2'-bipyridyl (Bipy) solvent molecules link the structural components into layers parallel to the ab plane.

Comment

The title compound, $(HBipy)[Pr(NO_3)_4(Bipy)(H_2O)] \cdot 0.5Bipy$ (Bipy is 2,2'-bipyridyl), (I), is a new complex characterized by a high coordination number of Pr. The Pr atom is elevencoordinated (Fig. 1). The 2,2'-bipyridyl solvent molecules lie on crystallographic inversion centers.

Among the Bipy complexes of lanthanides, the coordination number of 11 has been found only for [La(NO₃)₃(Bipy)-(H₃COH)(H₂O)₂]·C₁₀H₂₀O₅, (II) (Zhen & Rogers, 1994). Four nitrate anions in the $[Pr(NO_3)_4(Bipy)(H_2O)]^-$ complex anion of (I) are coordinated in bidentate mode. One of the Pr-O(nitrate) bonds is significantly elongated [2.752 (2) Å] in comparison to the seven others [average 2.612 (2) Å]. A similar elongation of one of the La-O(nitrate) bonds was found also in the neutral $[La(NO_3)_3(Bipy)(H_3COH)(H_2O)_2]$ complex of (II) (Zhen & Rogers, 1994). Several types of hydrogen bonds, $Ow-H\cdots O(nitrate)$, $Ow-H\cdots N(Bipy)$ and N(Bipy)-H···O(nitrate) link all the structural components of (I). Each (HBipy)⁺ cation acts as proton donor to form a hydrogen bond with a coordinated nitrate anion. The coordinated water molecule forms two hydrogen bonds. The first is with a terminal atom of one nitrate anion of a neighboring complex; two such bonds form a centrosymmetric dimeric complex (Fig. 2). The second is with a solvent Bipy molecule. Each solvent Bipy molecule has two hydrogen

© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Received 5 October 2004 Accepted 28 October 2004

Online 6 November 2004

metal-organic papers

Figure 1

ORTEPIII/ORTEP-3 (Burnett & Johnson, 1996; Farrugia, 1997) view of (I), showing 30% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.

bonds of this type, linking the dimers into infinite chains. The chains form layers parallel to the ab plane (Fig. 2).

Experimental

The crystals were obtained by slow evaporation at 293 K of a xylenol solution (1 ml) containing Pr(NO₃)₃·6H₂O (0.05 mol) and Bipy (the Pr^{3+} -Bipy molar ratio is 1:1).

Crystal data

	_
$(C_{10}H_9N_2)[Pr(NO_3)_4(C_{10}H_8N_2)-$	$D_x = 1.792 \text{ Mg m}^{-3}$
$(H_2O)] \cdot 0.5C_{10}H_8N_2$	Mo $K\alpha$ radiation
$M_r = 798.43$	Cell parameters from 15 166
Monoclinic, $C2/c$	reflections
a = 17.7935 (4) Å	$\theta = 2-27.5^{\circ}$
b = 10.2712 (3) Å	$\mu = 1.73 \text{ mm}^{-1}$
c = 32.8924 (8) Å	T = 130 (2) K
$\beta = 100.0016 (11)^{\circ}$	Prism, green
V = 5920.1 (3) Å ³	$0.36 \times 0.22 \times 0.18 \text{ mm}$
Z = 8	
Data collection	
Nonius KappaCCD diffractometer	5000 reflections with $I > 2\sigma(I)$
$\varphi - \omega$ scans	$R_{\rm int} = 0.045$
	0 07 50

φ – ω scans	$R_{int} = 0.045$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(MULABS; Blessing, 1995)	$h = -21 \rightarrow 21$
$T_{\rm min} = 0.638, \ T_{\rm max} = 0.732$	$k = -13 \rightarrow 12$
15166 measured reflections	$l = -33 \rightarrow 42$
5632 independent reflections	

CAMERON (Watkin et al., 1993) view of the packing of (I), showing the hydrogen-bonding interactions as dashed lines.

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.029$
$wR(F^2) = 0.067$
S = 1.13
5632 reflections
442 parameters
H atoms treated by a mixture of
independent and constrained
refinement

 $w = 1/[\sigma^2({F_o}^2) + (0.0144P)^2$ + 13.7668P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.64 \text{ e} \text{ Å}^{-3}$

Table 1			
Undrogon bonding goometry	1	Å	0

Hydrogen-bonding geometry (A,	č).
-------------------------------	-----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N8 - H8 \cdots O62^{i}$ $D1W - H12 \cdots N9$ $D1W - H11 \cdots O33^{ii}$	1.07 (4) 0.75 (4) 0.73 (4)	2.03 (4) 2.00 (4) 2.09 (4)	3.028 (4) 2.751 (3) 2.809 (3)	155 (3) 177 (4) 171 (4)
	1 (*** 1	1		

Symmetry codes: (i) $\frac{1}{2} + x$, $y - \frac{1}{2}$, z; (ii) $\frac{1}{2} - x$, $\frac{1}{2} - y$, -z.

All H atoms on carbon were positioned geometrically (C-H =0.93 Å) and refined using the riding model $[U_{iso}(H) = 1.2U_{eq}(C)]$. H atoms of the water molecule were located in difference Fourier maps and refined with $U_{iso}(H) = 1.5U_{eq}(O)$. The H atom on nitrogen was refined with a fixed displacement parameter $[U_{iso}(H) = 1.2U_{eq}(N)]$.

Data collection: KappaCCD Software (Nonius, 1997); cell refinement: HKL (Otwinowski & Minor, 1997); data reduction: HKL; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Nonius (1997). KappaCCD Software. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
- Zhen, P. J. & Rogers, R. D. (1994). J. Chem. Crystallogr. 24, 415-420.